You are here

Innovative processing technologies can help designers create products that perform better and cost less.

Medical tubing used in minimally invasive devices has become increasingly sophisticated. Today’s cutting-edge devices are reaching more remote regions of the human anatomy and are used to perform greater diagnostic and interventional procedures, requiring different performance properties on the exterior and interior of the catheter shaft and along the length.

The performance characteristics necessary for catheters to reach smaller distal areas within the body include pushability, torque transmission, and flexibility. Catheters are inserted into a vascular passage from a peripheral location, such as the femoral artery. The physician advances the catheter by pushing it from the proximal end and provides direction with rotational inputs that are transmitted by way of torque from the proximal end to the advancing distal tip. At the same time, the catheter must remain flexible to navigate the complex turns and branches inherent in the vascular system... 

Today’s minimally invasive surgical techniques involve incisions that are small enough for a surgeon to insert a catheter into a blood vessel. These small incisions are a conduit through which instruments and devices can be inserted to treat diseased blood vessels, clean out blocked vessels, or deliver clot-dissolving medications directly at the problem area.

Vascular catheters used in minimally invasive surgery face a number of design challenges. While they must be fairly stiff at their proximal end to allow the pushing and maneuvering of the catheter as it progresses through the body, they must also be sufficiently flexible at the distal end to allow passage of the catheter tip through smaller blood vessels without causing significant trauma to the vessels themselves or to the surrounding tissue. This combination of flexibility, high tensile strength, and compression resistance is what makes designing a vascular catheter challenging.